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We present an overview of the essential elements of
semidefinite programming as a computational tool for
the analysis of systems and control problems. We make
particular emphasis on general duality properties as
providing suboptimality or infeasibility certificates.
Our focus is on the exciting developments which have
occured in the last few years, including robust
optimization, combinatorial optimization, and alge-
braic methods such as sum-of-squares. These develop-
ments are illustrated with examples of applications to
control systems.
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1. Introduction

This paper, prepared as part of a mini-course to be
given at the 2003 European Control Conference,
presents a self-contained treatment of the basics of
semidefinite programming, as well as an overview of
some recent developments in convex optimization and
their application to control systems. There have been
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significant advances in theory, numerical approaches,
and applications in the past few years, with develop-
ments including robust optimization, combinatorial
optimization and integer programming, and algebraic
methods. Our objective in the course, and in this
paper, is to highlight some of these tremendously
exciting developments, with an emphasis on control
applications and examples.

The roots of semidefinite programming can be
traced back to both control theory and combinatorial
optimization, as well as the more classical research on
optimization of matrix eigenvalues. We are fortunate
that many excellent works dealing with the develop-
ment and applications of semidefinite programming
(SDP) are available. In particular, we mention the
well-known work of Vandenberghe and Boyd [60] as a
wonderful survey of the basic theory and initial
applications, and the handbook [64] for a compre-
hensive treatment of the many aspects of the subject.
Other survey works, covering different complementary
aspects are the early work by Alizadeh [1], Goemans
[22], as well as the more recent ones due to Todd [58],
and Laurent and Rendl [33]. The upcoming book [11]
presents a beautiful and clear exposition of the theory,
numerical approaches and broad applications of
convex programming. Other works dealing more
specifically with semidefinite programming for a
control audience are the classical research monograph
[10] and the subsequent book [21]. Excellent available
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references that collect results at the different stages of
the development of SDPs from a control perspective
are the review paper of Doyle et al. [16] and the lecture
notes by Scherer and Weiland [53].

1.1. Notation

We make use of the following notation. The non-
negative orthant in R" is denoted by R}, defined by

R} ={xeR"|x; >0 foralli=1,...,n},
and the positive orthant R’} | is
R}, ={xeR"|x; >0 foralli=1,...,n}.

The nonnegative orthant is a closed convex cone. It
defines a partial ordering on R" as follows. For x,
y€R" we write x>y to mean x — y € R,. Similarly
x>y means x —y € R’ . The set of real symmetric
n X n matrices is denoted S”. A matrix 4 € S" is called
positive semidefinite (PSD) if xT Ax >0 for all x e R",
and is called positive definite if x* Ax >0 for all non-
zero x € R". The set of PSD matrices is denoted S, and
the set of positive definite matrices is denoted by §', | .
Both §" and S| are convex cones. The closed convex
cone S induces a partial order on S", and we write
A>B to mean 4 — B €S|, Similarly 4> B means
A — B €S, . Both the inequality > defined on R"
and the inequality > defined on S" are called
generalized inequalities. We also use the notation
A<0tomean — A >0, and similarly for <, <, and
<. Aset SCR"is called affine if Ax+ (1 — M)y e S for
all x, yeS and all AeR. It is called convex if
Ax+ (1 —=XyeSforall x, yeSand all A€[0,1]. The
ring of polynomials in # variables with real coefficients
is denoted R[xy, ..., x,].

2. Formulation of Optimization Problems
2.1. Optimization and Feasibility Problems

In this paper we consider two main types of problems;
feasibility problems and optimization problems. In a
feasibility problem, we typically have a system of
inequalities defined by functions f;:R"—R for
i=1,..., m. We are then interested in the set

P={xeR"|fi(x)<Oforalli=1,...,m}.
(1)

Typically we would like to know if the set P is non-
empty; i.e., if there exists x € R” which simultaneously
satisfies all of the inequalities. Such a point is called a
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feasible point and the set P is then called feasible. If P
is not feasible, it is called infeasible. If P is known to be
feasible, it is a further and typically more computa-
tionally difficult question to find a feasible wx.
Feasibility problems may also be defined using gen-
eralized inequalities, where the functions f; map into
R” or ", and the inequalities are induced by arbitrary
proper cones.

In an optimization problem, we have an additional
function fy: R”" — R, and would like to solve the fol-
lowing problem.

minimize fy(x)

)

subject to x € P.

There may also be additional linear equality con-
straints of the form 4Ax = b. These can be incorporated
in the following development using minor additions,
and we omit them to simplify the presentation.

2.2. Semidefinite Programming

An SDP is a generalization of a linear program (LP),
where the inequality constraints in the latter are
replaced by generalized inequalities corresponding to
the cone of positive semidefinite matrices.

Concretely, an SDP in the pure primal form is
defined as the optimization problem

minimize trace(CX )
trace(4;X) =b; foralli=1,...,m,
X=0 (3)

subject to

where X €S" is the decision variable, b€ R and C,
Ay, ..., A, €S" are given symmetric matrices. There
are m affine constraints among the entries of the PSD
matrix X given by the equality relations. The crucial
feature of SDPs is that the feasible set defined by the
constraints above is always convex. This is therefore
a convex optimization problem, since the objective
function is linear.

There are several alternative ways to write an SDP.
We choose the above form since it exactly parallels the
standard form used for linear programming, and is
currently the most commonly used in the optimization
community. Much of the literature on the use of SDPs
for control has used a slightly different form with free
variables, corresponding either to a parametrization
of the solution set (see below) or to the standard dual
SDP discussed in Section 3.3. We join here the strong
trend towards this unification of terminology.

We can understand the geometry of SDPs in the
following way. For a square matrix X, let X be the
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k x k submatrix consisting of the first & rows and
columns of X. Then

X >0 if and only if det(X;) > 0
forallk=1,...,n.

That is, in principle we can replace the positivity
condition in Eq. (3) by a set of polynomial inequalities
in the entries of X. Note that, in the case of nonstrict
inequalities, the condition must be modified to include
all minors, not just the principal ones. Sets defined
by polynomial inequalities and equations are called
semialgebraic sets. We therefore see that the feasible
set defined by an SDP is a semialgebraic set. This
construction is not too useful practically; however we
shall see later that the reverse construction (converting
a semialgebraic set to an SDP) is very useful. Unlike
the LP case where the feasible sets are polyhedra, the
feasible sets of SDPs (called spectrahedra in [48]) can
have curved faces, together with sharp corners where
faces intersect. For this reason, or equivalently,
because of nondifferentiability of the eigenvalues,
problem (3), while convex, is not smooth.

An example is as follows. Consider the feasible set
defined by X > 0 and the equality constraints

Xiu—Xo+Xn=7,
Xi3=1, X3 =0.

Xz —Xio+ X =4,

These four affine constraints define a two-dimensional
matrix subspace, since dim(S*) =6, and 6 — 4 =2. For
easier visualization, we find a parametrization of this
two-dimensional subspace in terms of the free vari-
ables (x, y), obtaining that the feasible set is

—(x+y) 1

3—x
XeS'|X=|-(x+y) 44—y 0
1 0 —X

X - O,x,yER}.

Q)

This set may readily be expressed as an SDP of the
form (3). By looking at the determinants of its prin-
cipal submatrices, we have X satisfies Eq. (4) if and
only if the parameters x and y simultaneously satisfy
the polynomial inequalities:

3—-x>0, (C

B-x)4—-y) —(x+»)°>0, (A)

—x(B3=x)(4-y) = (x+»)) - (4-y)>0. (B)
The feasible set of x and y is shown in Fig. 1.

We have seen that the feasible sets of SDPs are

convex and semialgebraic. A natural question is
therefore whether every convex semialgebraic set is
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Fig. 1. Example feasible set for an SDP.

representable by an SDP. Without using additional
variables this is not always possible, as there are
nontrivial obstructions that must be avoided (for
instance, exposed faces [48]). We refer the reader to
the recent result by Helton and Vinnikov [27] for a
complete answer in the two-dimensional case. The
results in Section 7 can be used to constructively build
arbitrarily close approximations.

2.3. Other Classes of Optimization Problems

Semidefinite programs define a fairly wide class of
optimization problems. However, it is sometimes
convenient to further refine the classification. This
leads to significant computational benefits, since some
subclasses of SDP possess highly efficient specialized
algorithms. This also provides analytical benefits,
since in this case further algebraic or geometric
properties may provide additional insight (for
instance, the polyhedrality of LP).

The language of conic programming [39] provides a
convenient framework to analyze these issues. By
posing an abstract optimization problem of the form

minimize (C, X)
subject to AX = b,
X €K,

where X is an element of a vector space V, and
A:V — R"is a linear operator and L C V'is a given
proper cone, a whole collection of different problems
can be simultaneously analyzed. Among the classes of
problems that can be interpreted as particular cases
of the general conic formulation we have linear
programs, second-order cone programs (SOCP), and
SDP, when we take the cone K to be the nonnegative
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orthant R’} , the second order cone in 7 variables, or
the PSD cone S', respectively. We have then the fol-
lowing natural inclusion relationship among the dif-
ferent optimization classes.

LP C SOCP C SDP.

For numerical efficiency reasons, we want to for-
mulate and solve a given problem in as simplified a
setting as possible.

Second-order cone programs partially enjoy the
expressive modeling power that non-polyhedral cones
such as the PSD cone have, but at the same time share
with LP the scalability properties necessary for solving
large-scale instances (of the order of tens of thousands
of variables), that are currently out of reach for SDP.
More details on the theory and applications of second-
order cone programming can be found in [39,34,2].

We are confident that the application areas where
SOCP techniques are used will increase dramati-
cally in the future, either as the natural modeling
framework, or as a computational efficient device to
approximate an underlying more complicated set,
such as the SDP cone.

The case of optimization problems on the cone of
sum of squares (SOS) polynomials, to be discussed in
Section 7, has attracted lately the attention of several
researchers. From a strictly mathematical viewpoint
it is equivalent to SDP; SDP corresponds to non-
negativity conditions on quadratic forms, which
coincide with the SOS forms, and conversely, we can
reformulate SOS programs as SDPs. Even though the
possibilities of numerically exploiting the structure of
SOS programs is not yet fully understood, there are at
least a couple of reasons why it is convenient to think
of them as a distinguished category of problems; the
richness of the underlying algebraic structure, as well
their convenient modeling flexibility.

Yet another interesting class, that only in the last
few years has begun to be explored, is that of opti-
mization problems involving hyperbolic polynomials
and their associated cones [24,5], which are of great
theoretical interest. Research in this area is still at its
early stage, with some open fundamental mathema-
tical questions, and practical applications still under
investigation.

3. Certificates and Duality

3.1. Duality for Optimization Problems

If we have an optimization in the form (2), there is a
useful and important duality theory. Define the
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Lagrangian function L:R" x R" — R by
L0 ) = o) + 3 M)
for all x € R”, Z)TIG R™,
and define the set D by
D= {)\ ER"[A>0, inf L(x))is finite}.
Then define the Lagrange dual function g: D — R by

g\) = inﬂg L(x,\) forall \e D,
xeR"

and the dual problem as

g(A)
subject to A € D.

maximize

()

A point A € D is called dual feasible. The importance
of the dual problem is that, given any dual feasible A,
we have a lower bound on the set of achievable values
of the primal problem. That is, if x is primal feasible,
and X is dual feasible, we have

g(\) < fo(x).

This is known as weak duality, and follows because,
for any A€ D and x € P, we have

g(\) < L(x,\)

= fo(x) + Z Aifi(x).
i=1
< fo(x)

There are also important cases under which the optimal
value of the dual problem (5) is equal to the optimal
value of the primal problem (2), called strong duality.
This holds if the functions fy, ..., f,, are convex, and
further standard conditions, called constraint qualifica-
tions hold. An example of a typical constraint quali-
fication is that if there exists x € R” which is strictly
feasible, i.e., f;(x) <0 for all i=1,..., m, then strong
duality holds. Note that we assume that the functions

f; are defined on all R”.

3.2. Duality for Feasibility Problems

For feasibility problems, the Lagrange dual function is

m

g(A) = inf Z)\iﬁ(x) for all A € R™,
-1

xeR" F
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and the function g is assigned the value —oo if the
minimization above is unbounded below. We define
the set

D:{AeRm\Azo,g(A)>o}. (6)

This gives the theorem of alternatives, which states that
at most one of P and D is feasible. To show this,
suppose P is nonempty, and x € P. Then we have, for
all \e R"™,

6 <3 M) <0,
i=1

and so D is empty. The primal and dual feasibility
problems defined by P and D are called weak alter-
natives. Note that it may happen that both P and D
are infeasible. Again, if the functions fi,..., f,, are
convex, then under suitable constraint qualifications
the sets P and D are strong alternatives; exactly one of
P or D is nonempty.

3.2.1. Certificates of infeasibility

The theorem of alternatives above, and its general-
izations discussed below, are of great importance. For
many practical problems, one would like to develop
an algorithm to find a feasible point x. Once such an x
is found, verifying that it satisfies the desired condi-
tions is straightforward, since one may evaluate the
functions fi, ..., f,, at x and check that they are all
negative. However, if a feasible point x cannot be
found, one would like to demonstrate that no solution
exists, and that the problem specification must be
altered. The dual feasibility problem gives precisely
this; if instead one can find a dual feasible point, then
this provides a certificate that no solution to the
primal system of inequalities exists. We emphasize
that duality is a property by which infeasibility (or
suboptimality) can be concisely certified.

3.3. Duality in Semidefinite Programming

While we will not delve into the details here, it is pos-
sible to extend the duality theory described in the
previous subsection to the case of generalized inequal-
ities. Since SDP naturally falls within this framework,
it is not surprising then that SDPs, being convex
optimization problems, enjoy a rich duality structure.

The standard dual associated with the primal pro-
gram (3) is also an SDP, given by

maximize bty

m 7
subject to ZyiAi < C, )

i=1
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where the dual variable y € R™. As above we have
weak duality; any feasible solution of the dual pro-
vides a lower bound on the achievable values of the
primal; conversely, feasible primal solutions give
upper bounds on dual solutions. For SDPs, this may
be shown directly, since for any primal feasible X and
dual feasible y we have that the difference between the
two objective functions satisfies

m
trace(CX) — b'y = trace(CX) — Zy[ trace(A4;X)

i=1

= trace ( (C — Zy,-A,-) X)
i=1

>0,
with the last inequality being true because of self-
duality of the PSD cone. The following result expresses
a strong duality property possessed by SDPs.

Theorem 1. Consider the primal-dual SDP pairs (3)
and (7). If either feasible set has has a nonempty
interior, then for every e > 0, there exist feasible X, y
such that

trace(CTX) —bTy < e.

Furthermore, if both feasible sets have nonempty
interiors, then the optimal solutions are achieved by
some X,, ..

4. Semidefinite Programming and Control

There has been extensive application of SDP techni-
ques for analysis and synthesis for control systems,
and the field is still experiencing a continuous growth.
Significant changes have resulted from this, one of the
most important being a radical change in what it
means to have solved a control problem. Historically,
control problems have been considered solved when
they have been reduced to methods computable with
the technology of the time; at various points in his-
tory, this has meant a reduction to equations soluble
via graphical plots (such as root-locus), and a reduc-
tion to linear algebraic systems, such as Riccati
equations. Nowadays it is almost universally accepted
that the reduction of a question to an easily tractable
convex optimization problem (in particular, an SDP)
constitutes a solution.

It is also widely accepted that matrix inequalities
and duality are inextricably linked with the study of
linear control systems; this is witnessed by the fun-
damental role played by the Lyapunov and Riccati
inequalities [4,63]. Very significant work by many
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researchers has continuously expanded these bound-
aries; robustness analysis techniques based on quad-
ratic stability, multipliers, structured singular values,
or integral quadratic constraints (IQCs), as well as the
corresponding synthesis methodologies, have dealt
with uncertainties and nonlinearities, and can all be
cast under the convenient computational machinery
of matrix inequalities. Given our purposes, we will not
go here into a detailed survey of the many available
results, but instead refer the reader to the extensive
available literature, a good start being the general
reference works mentioned in the introduction. Also,
as a representative example that illustrates several of
the now standard techniques available, we present
next a simple case of multiobjective design.
Consider the linear system

x(t) = Ax(t) + B.z(t) + B,u(t),
w(t) = Cx(t).

We are interested in designing a state-feedback con-
troller u= Kx that minimizes the H, norm of the
transfer function 77, from the input z to the output w.
Additionally, we would like the poles of the closed-
loop system to be located in a specific region of the
complex plane, described by the feasible set of the
linear matrix inequality
P={ZeC|P+Rz+R"z> 0},
PeSk, ReRMK

where the inequality should be interpreted as con-
straining the Hermitian matrix on the left-hand side to
be positive semidefinite. It is well known [10,15,53]
that the two desired design specifications ||7.,,|» <~

and o(A4 + B,K) C P can be expressed as the SDP
conditions

trace(Z) < ~°,

[AXm + X1 4% XICT} <0,
CX —1I
)0

and
PRX,+R® AgXs +R" @ X241 =0, X, =0,

respectively, where A= A4+ B,K is the closed-loop
state matrix, and ® is the Kronecker product.

The conditions here are not yet affine in the decision
variables, since there are bilinear terms such as KX5.
To convert this into a tractable synthesis problem, a
(possibly conservative) approach is to assume X;=
X>=2X, and then introduce the variable Y= KX, so
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AaX1=A44X,=AX+ B,Y. The system to be solved
reduces now to

minimize trace(Z)

(AX+ B,Y)+ (AX + B,Y)" XxCT

subject to 0 = R
CX -1

o< [ X 2]
B 7]
0<PRX+R®(AX + B,Y)

+R"®(AX+B,Y)",
0<X,

which is a bona-fide SDP. After solving it numerically,
the controller can be recovered from the solution
using K=YX ..

As a simple illustration, assume the numerical data

o201
-1 4]

Buzm, Bzzm, c=1[1 1],

and the region in the complex plane defined by
|z+2|< 1, ie.,

ST

Ignoring the constraint on the closed-loop pole loca-
tions, the optimal controller achieves a value of
(trace Z)'/* = || T.,, ||, arbitrarily close to v/10 ~ 3.16,
but the gains K grow unboundedly, as does the mag-
nitude of one of the poles. Imposing now the left-over
constraint, the optimal solution achieves a value of
(trace Z)l/2 ~ 21.26. This is only an upper bound on
the H, norm; the actual achieved value is ||T%,|>=
7.57, with the final controller being K=[-9.92, 35],
and closed-loop poles at —1.96 £ 0.66;.

Several improved modifications of these methods
are also available, including better ways of handling
the requirement on a common Lyapunov function,
and extensions to multiobjective output feedback;
once again, we refer the reader to the cited biblio-
graphy for the details.

A

5. Combinatorial Optimization

Many well-known problems in linear control theory
have the property that they can be exactly refor-
mulated in terms of SDPs, although in some cases
the required transformations can be far from
obvious. When attempting to extend convexity-based
methods to larger classes of problems, a complete
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characterization of the solution set via a simple SDP
may no longer be possible. The difficulties arise in two
different (though related) fronts. On the one hand, it
may be computationally difficult to find feasible
points, that show that the problem indeed has a
solution; on the other hand, there may not exist a
concise way of demonstrating infeasibility. There
is a clear interdependence of these two issues, since if
the first question were always easy, then the second
would follow, but they are not equivalent. For the case
of feasibility problems defined by convex functions,
the first property is satisfied since we can efficiently
search for solutions. As we have seen, convex duality
gives us a useful way of certifying the nonexistence of
solutions. After introducing the formal machinery of a
computational model and polynomial-time algo-
rithms to make their meaning more precise, these
questions play an essential role in some of the central
issues in computational complexity; whether P =NP
and NP =co-NP, respectively [20].

Note also that convexity properties by themselves
do not automatically imply polynomial-time solva-
bility. The specific representation of the feasible set
plays a crucial role here, and the existing results
require the availability of either subgradients [55], or
a self-concordant barrier function [39]. There are
many examples of optimization problems over
(possibly implicitly given) convex sets, where all these
operations, or even checking membership, are
computationally hard.

Computational hardness arises in many cases as a
direct consequence of the combinatorial nature of
the problem. When this happens, a class of approx-
imate methods, usually called convex relaxations, are
typically used to either bound the achievable optimal
values, or obtain reasonably good candidate solutions.
While relaxations based on linear programming have
been and still are extensively used in many application
areas edited such as integer programming, in the last
few years a vast collection of new and powerful SDP-
based relaxations have attracted the attention of many
researchers.

An important and well-known example where these
SDP relaxations are extensively used is boolean pro-
gramming. Consider the NP-hard problem of mini-
mizing a quadratic form over the discrete set given by
the vertices of a hypercube, i.c.,

xTOx
x;€{+1, -1} foralli=1,...,n,
(8)

where Q € S". Notice that the feasible set is discrete
and has 2" points, so convexity-based techniques

minimize

subject to
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would seem not to be applicable. However, a lower
bound on the optimal solution can be found by
solving the primal-dual pair of SDPs given by

minimize trace(QX)
subject to X =0,
Xi=1 foralli=1,...,n,
)
and its dual
maximize trace(A)
subject to A diagonal, (10)
Q—A=0.

This pair of SDPs have several possible interpreta-
tions, extensively discussed in the literature. First
notice, that, on the primal side, letting X =xx', we
can equivalently rewrite the original objective func-
tion as x'Qx = trace(Qxx") =trace OX. The feasible
set is given now by X >0, X;=1, rank(X)=1.
Dropping the rank constraint, we obtain directly the
SDP (9).

Another interpretation is given from the dual SDP;
an argument based on Lagrangian duality applied to
the constraints x? — 1 = 0 is enough. We have

L(x,)\) = x"Qx — Z)\i(x? -1

1

=xT(Q — A)x + trace A,

where: A =diag A,

For L to be bounded below, the condition
QO — A =0 is required, and therefore the SDP (10)
directly follows.

This relaxation can also be interpreted as a specific
case of the so-called S-procedure; see [10] and the
references therein. Several important results are avail-
able regarding the performance of these relaxations;
the celebrated Goemans—Williamson approximation
scheme for MAXCUT [23] relies exactly on this
relaxation, followed by a randomized rounding step.
For many other related problems, it has been possible
to prove a priori approximation guarantees.

5.1. Combinatorial Optimization and Control

An example of combinatorial optimization techniques
applied to control is as follows. Consider the problem
of designing an optimal open-loop input for the single-
input discrete-time system
x(t+1) = Ax(t) + Bu(1),
y(1) = Cx(1)
for t=0,..., N, where one would like to minimize
the ¢, criterion q(u) = ||3(r) — y(1)||*, with y, being the
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desired reference output trajectory, and the input u(¢)
constrained by |u(7)|=1 for all r=0,..., N. In other
words, we have an open-loop LQR-type problem, but
where the input is bang-bang, taking only two possible
values.

It is clear that a simple lower bound on the optimal
value can be obtained from the solution of an asso-
ciated unconstrained LQR problem. We are interested
in computing better, less conservative lower bounds
on the achievable value of ¢(u). We can formulate the
search for such a lower bound as an SDP. For nota-
tional simplicity, let ¢(u) = u" Qu+ 2r'u+ s, where the
expressions of Q, r, s can be easily obtained from those
of 4, B, C and y,. We are thus interested in bounding
the value of the following optimization problem.

e[ [ ][}
minimize
1 rTos| |1

subject to  u; € {+1, — 1} forall i.

Let ¢ denote the optimal value of this problem.
Similar to the one described earlier, a simple SDP
bound on the optimal value can be obtained as follows.
Let ¢, be the optimal value of

minimize trace(D)

Q—TD r:|i0’

subject to {
r s

where D is a diagonal matrix. Clearly ¢, <¢", as can
easily be seen by multiplying the matrix inequality left
and right by [1" 1] and its transpose. Notice also that
q.>0, since D=0 is always a feasible point.

6. Robust Optimization

An important development in recent years in the
field of robust optimization has been robust semidefi-
nite programming. Here one has a parametrized family
of linear matrix inequalities, and one would like to
find a point which is simultaneously feasible for the
whole family.

We give here an example from finite-horizon control,
which may be used, for example, in receding horizon
control. We have a linear dynamical system

x(t+ 1) = Ax(¢) + B,w(t) + Bu(t),

(1)
»(1) = Cx(1),

where x(7) € R”, u(t) € R™ and w(¢) € R™ forall =

0,...,N, and the system evolves on the discrete-time

interval [0, N]. We would like to design an input signal
u(0),...,u(N —1) so that the system output y tracks
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a desired signal yqes. Define

u(0) w(0)
_u(N.— 1) w(N.— 1)
[ »(0) aes(0)
y= > Vdes =
LY(N) Vdes(N)

Suppose the set of disturbances w is given by

W= {w € RM | lw(8)]l2 € Wmax

foralll:O,...,N—l}.

In this way the disturbances are specified so that at
each time ¢ the vector w(¢) lies within a Euclidean ball.
Such sets, and generalizations thereof, are called
ellipsoidal uncertainty in [6].

We would like to find an input sequence u which
solves

min max ||y — yaes [|2-
u wewWw

As standard, one may construct block-Toeplitz
matrices 7 and S such that y=Tu+ Sw for all u, y
satisfying the dynamics (11), and so we can write this
problem as

muin max | Tu+ Sw — ydes ]2 - (12)
w
This problem is therefore a robust least-squares
problem; recent work [17] in this area has produced
solutions using semidefinite programming for this
and more general versions, and certain classes of
this problem may be solved using second-order cone
programming [34].
Let s1,. .., Snn, be the columns of S, and define

F() u)=
( ) Tu_ydcs 1

t (Tu - ydes)T ]
0 T
Fi(u) = [ Si ] foralli=1,..., Nn,.
Si 0
Then problem (12) is equivalent to the robust SDP
minimize ¢

Nn,,
subject to  Fo(u) + Z wiFi(u) = 0 forallwe W,
=1

(13)
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where w; is the ith (scalar) element of w. An upper
bound on the solution of this robust SDP, along with
an input u that achieves it, may be found by solving

the following SDP in the variables ¢,u, Py,..., Py,
Ql’ AR QN'
minimize ¢
P; Flictyn,+1 Fiy, 1
Flityn,+1 0i
subject to ) . =0
Fip,—1 0i
foralli=1,...,N, (14)
t (Tu — ydes)T
Tu— YVdes I

l N
_EZ(PI+ Q) = 0.
=

Given a feasible solution, we have

max || Tu + Sw — yges ||2< /2.
wew

The particular problem shown above is of course just
an example of the application of the robust SDP
approach to control. Many other problems for which
one has synthesis conditions in terms of linear matrix
inequalities may be similarly generalized to construct
robust synthesis conditions.

7. Sum of Squares Methods

Many optimization problems have feasible sets spe-
cified by polynomial equations and inequalities. This
includes the feasible set of a SDP, as well as many
more general classes. Finite integer constraints can
be ecasily expressed as polynomial equations; e.g.,
x€{0,1} is equivalent to the constraint equation
x(x—1)=0.

Specifically, a (basic) semialgebraic set is a subset
of R" defined by a finite number of polynomial
equations and inequalities. For example, the subset of
R? defined by

{(x1,x2) € R? | xf —i—x% < l,xf —x; <0}

is a semialgebraic set. Given a set of polynomials
specifying such a set, one would like to find either a
feasible point or a certificate of infeasibility. Clearly, a
semialgebraic set need not be convex, and in general,
testing feasibility of such sets is intractable.

Recent developments have led to an approach using
semidefinite programming to test feasibility of semi-
algebraic sets [43-45] (see also [32] for a dual
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approach, and [14]). By solving a semidefinite pro-
gram, one may obtain a certificate of infeasibility for
an infeasible semialgebraic set. The size of this certi-
ficate (i.e., the size of the SDP to be solved) may
depend on the specific set. One of the appealing fea-
tures of this approach is that there is a hierarchy of
such certificates, allowing one to solve a sequence of
SDPs in an attempt to prove infeasibility of a semi-
algebraic set.

The simplest case is when we are concerned with a
set defined by a single polynomial inequality, as fol-
lows. Given f€ R[xy,...,x,], we would like to know
if there exists x € R” such that f(x) <0. If there does
not exist such an x, we have f(x) >0 for all x and f'is
called positive semidefinite, or PSD.

An example is as follows. Suppose fis given by

S(x) = dx] + dxixy — T35 — 2x13 + 1043,

and we would like to determine the feasibility of the
set

P = {x e R*| f(x) < 0}.

Assume now that there exists a matrix Q € S such that

X% ! q11 4912 413 Xf
Sx) = X% q12 422 423 x%
X1X2 q13 423 433 X1X2
=z (x)Qz(x). (15)

In general, there are many such Q, since this is just a
system of linear equations in the entries of Q, as can be
seen by matching coefficients on the right- and the left-
hand sides. However, an important consequence is
the following; if we can find a PSD Q that satisfies
Eq. (15), then f{x) would have to take only non-
negative values, so one immediately has a proof that
there cannot exist a real x € P and the matrix Q is then
a certificate of infeasibility of the semialgebraic set P.

In the example above, we can parametrize the set of
possible Q by

214 -2 2 x3
fx)=1 x3 - 10 -1 x3
X1X2 2 =1 =T742X] [x1x2

for all A€ R, and therefore if there exists A € R such
that

4 ) 2
X 10 -1 |=o,
2 1 —T742)
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then P is infeasible. This is an SDP. In this case,
picking A =6 gives a positive semidefinite matrix, and
therefore a valid proof of the infeasibility of the set P.

This approach is quite general. For every poly-
nomial of degree d in n variables f€ R[xy, ..., x,], we
form the vector of monomials z(x) which has as ele-
ments all monomials of degree d/2 or less. In fact,
fewer monomials may be included, which gives a
reduced-size SDP, depending on the particular poly-
nomial f. The set of matrices Q for which f(x) = z(x)"
Qz(x) for all x is an affine set, and is simple to
construct.

The above condition can be interpreted as follows.
If there exists a positive semidefinite matrix Q such
that f{x)=z(x)" Qz(x), then we may factorize Q.
Every PSD matrix Q may be factorized as Q= V7,
where V'€ R"*"is a real matrix, and r is the rank of Q.
With vy,..., v, the columns of V', we have

S(x) = 2(x)" Qz(x)

r

= (7))’

i=1

and in this case we may choose a factorization with

0 2
V=11 =31,
2 1

giving
flix) = (x% + 2x1x2)2 + (2)6% — 3x§ + xlxz)z,

which is a sum-of squares (SOS) decomposition of f
[46,51]. From this decomposition, it is immediately
clear that there cannot exist a feasible x, and the
decomposition (characterized by Q) is clearly a certi-
ficate of infeasibility. Hence we may decide whether a
polynomial is SOS by solving an SDP.

The natural question to ask, when P infeasible, is
whether there always exists such a certificate of
infeasibility. Expressed another way, is every PSD
polynomial a sum of squares? It was shown by Hilbert
in 1888 that in general this is not the case; there exist
polynomials which are PSD but not SOS. This is to be
expected, since it is known that testing feasibility of a
semialgebraic set (even if it is defined by just one
polynomial) is intractable; but if every PSD poly-
nomial was SOS then feasibility would be testable
using a simple SDP. An example of a polynomial
which is PSD, but not SOS, is the well-known
Motzkin form

M(x,y,2) = x*? + x2y* 4 20 — 33722

P.A. Parrilo and S. Lall

Besides the more general methods in Section 7.1, there
is a further result that gives a method for bridging the
gap between SOS and PSD polynomials. It was shown
by Reznick [50] that if f(x)>0 for all xeR”, then
there exists some r such that

) (Z x?)
i=1

is SOS. The coefficients of this polynomial are affine
functions of the coefficients of f, and so for each r one
may test whether this product is SOS by solving an
SDP. This gives a sequence of SDPs, of growing
dimension, which may be used to test whether a given
polynomial is positive definite.

An important remaining question is how to find
feasible points x when P is feasible. This is a distinct
question from finding a certificate of infeasibility;
however the dual problem to the above SDP can be
used in certain cases to do this.

7.1. Generalized Duality and the Positivstellensatz

We would now like to consider how to certify infea-
sibility for semialgebraic sets defined by multiple
polynomial inequalities, that is sets P of the form

P:{xeR”M(x)zOforalli:1,...,m},
(16)

where the functions f; are polynomials on R"”. For
convex feasibility problems which satisfy a constraint
qualification, the theorem of alternatives provides a
necessary and sufficient condition for feasibility of the
primal. However, for semialgebraic sets, the feasibility
problems are defined by nonconvex functions f1, ...,
fm- In this case, the following stronger result is very
useful. Define P7 . the set of SOS polynomials, as

NN

SOs

Pis = {SE R[x1,...,X,) | sis an SOS}.

Define the functional G : P

SOs

— R by

n

G(s1,...,8,) = sup Zsi(x)fi(x)
xeR" 79
for all si,...,5, € Pl

Then define the dual set of functions
Dy = {(Sl, coSm) | 81 € Pross G(S1, o 8m) < ()}.

Then P and D, are weak alternatives; at most one of P
and D, is nonempty. To see this, suppose that P is
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feasible, and x € P. Then, for all sy,...
we have

. Sm€E P,

S0s°

m

GS],... Z

and hence D, is empty. This refutation is a simple
form of weak duality.

X)fi(x) >

7.1.1. The Positivstellensatz

A slight modification of this result is as follows. If
there exist SOS polynomials s, s1, ..., s, such that
D six)fi(x) + s0(x) +1=0, (17)
i=1
then the set P is infeasible. This sufficient condition
for infeasibility of P may be tested using semidefinite
programming. One picks a fixed degree d over which
to search for SOS polynomials s, ...,s,, satisfying
this condition. The decision variables are the coeffi-
cients of the polynomials and the constraints that the
s; be SOS are imposed as positive semidefiniteness
constraints. Clearly, if we can find a set of functions
S1s ..., 8, satisfying Eq. (17) then the set P is infea-
sible. A similar, but stronger condition is

n

D silx +Zqu

i=1

Jrs‘o( )+1:0,

(18)

which again may be tested via SDP. Refutations of
this form have very strong duality properties. It can be
shown that, by allowing for unrestricted degrees of the
polynomials s; and #;, and arbitrary squarefree pro-
ducts of f;, one may always construct a refutation for
any given infeasible semialgebraic set P using SOS
polynomials [8]. No assumptions whatsoever on the
polynomials f; are required. This result is called the
Positivstellensatz. Software for testing feasibility of
semialgebraic sets using the above methods is avail-
able in the form of a Matlab toolbox, called SOS-
TOOLS [47].

7.1.2. Applications

Testing feasibility of semialgebraic sets has important
applications in control and combinatorial optimiza-
tion. For example, the integer program of Eq. (8) can
be formulated as

minimize t
subject to  xTQx <1, (19)
xf—l:O foralli=1,...,n,

317

hence we check feasibility for a fixed ¢ using the above
Positivstellensatz approach. In fact, the relaxation
discussed in that section exactly coincides with that
obtained using the first level of the general approach
just presented.

7.1.3. SOS and Lyapunov functions

The possibility of reformulating conditions for a
polynomial to be a sum of squares as an SDP is very
useful, since we can use the SOS property in a control
context as a convenient sufficient condition for poly-
nomial nonnegativity. Recent work has applied the
SOS approach to the problem of finding a Lyapunov
function for nonlinear systems [43,41,57]. This
approach allows one to search over affinely para-
metrized polynomial or rational Lyapunov functions
for systems with dynamics of the form

(1) = fi(x(1))

where the functions f; are polynomials or rational
functions. Then the condition that the Lyapunov
function be positive, and that its Lie derivative be
negative, are both directly imposed as SOS constraints
in terms of the coefficients of the Lyapunov function.

As an example, we consider the following system,
suggested by Krstic.

foralli=1,...,n,

X =-x+(1+x)y,

y=—(1+x)x.
Using SOSTOOLS [47] we casily find a quartic poly-
nomial Lyapunov function, which after rounding (for
purely cosmetic reasons) is given by

V(x,y) =6x> — 2xy + 83> — 2° + 3x*
+ 6x7y% 4 3p*.

It can be readily verified that both V(x,y) and
(—=V{(x,y)) are SOS, since

x1'r6 =1 0 0 07[xT
-1 8 0 —1|]|
V=|x? 0 0 3 0 2,
Xy 0 0 O 0 Xy
»? 0 -1 0 3 1 Ly% ]
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and the matrices in the expression above are positive
definite. Similar approaches may also be used for
finding Lyapunov functionals for certain classes of
hybrid systems.

8. Exploiting Control-Specific Structure

The SDP problems that arise from the analysis and
synthesis of linear control systems, usually have a very
specific structure, that should be exploited to achieve
the best possible computational efficiency. In parti-
cular, the ubiquity of Lyapunov-style terms of the
form AP+ PA (or ATPA— P, in the discrete case)
suggest that generic implementations using the SDP
standard forms described in Eqs (3) and (7) will not be
optimal, unless the extra structure is somehow taken
into account.

An important subclass for which several customized
algorithms are already available is that of optimiza-
tion problems with an structure induced by the
Kalman—Yakubovich—Popov (KYP) lemma (see
[63,49] and the references therein). This fundamental
result establishes the equivalence between a frequency
domain inequality and the feasibility of a particular
SDP. It is an important generalization of classical
linear control results, such as the bounded real and
positive real lemmas, and the cornerstone of several
analysis and synthesis results.

The harder direction of the KYP lemma, that the
frequency domain inequality implies the existence of
a storage function, can be interpreted as a /lossless
property of an associated SDP relaxation, much in the
style of the ones presented in Section 5. Yet another
related reformulation of the KYP lemma is given by
the equivalence of the structured singular value p and
its upper bound in the case where there is a full block
and one scalar block [40].

In the case of systems with large state dimension #,
the KYP approach is not very efficient, since the
matrix variable representing the storage function that
appears in the LMI has (n”+ n)/2 components, and
therefore the computational requirements are quite
large, even for medium sized problems.

Several different methods have been proposed
recently for the efficient solution of this and related
kind of problems. The approaches by Kao et al.
[29,30], Parrilo [42] and Varga and Parrilo [62] all rely
on outer approximation methods based on a dis-
cretization of the frequency axis, with the former using
linear programming and the latter using SDP cuts.
The scheme by Hansson and Vandenberghe [25] is
based on the interior point machinery, but cleverly
exploits the Lyapunov structure at each iteration at
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the linear algebra level. Rotea and D’Amato exploit
several properties of the g SDP upper bound to
obtain significant speed-ups in the computation of
the worst-case frequency response [52]. Additionally,
methods for taking advantage of autocorrelation
structure have also been developed by Alkire and
Vandenberghe [3].

9. Available Implementations

Despite the impressive advances on the theoretical and
modeling aspects of SDP, much of its impact in
applications has undoubtedly been a direct con-
sequence of the efforts of many researchers in pro-
ducing and making available good quality software.
In this section we give pointers to and discuss briefly
some of the current computational tools for effectively
formulating and solving SDPs.

9.1. Solvers

From a computational viewpoint, SDPs can be effi-
ciently solved, both in theory and in practice. In the
last few years, research on SDP has experienced an
explosive growth, particularly in the areas of algo-
rithms and applications. Two of the main reasons for
this practical impact are the versatility of the problem
formulation, and the availability of high-quality
software.

For applications of semidefinite programming to
control, the pioneering codes were the MATLAB
LMI toolbox [19] and SP [61]. Today there is a wide
variety of excellent SDP solvers to choose from. For
general-purpose small- and medium-scale problems,
interior-point based solvers are probably the best
choice, combining good performance and accuracy,
primal and dual solutions, as well as reasonable speed-
ups depending on the problem sparsity. We mention
a few of the best-known ones: SeDuMi [56], SDPT3
[59], SDPA [18], CSDP [9], DSDP [7], among others.
Other good pointers to the available SDP solvers
are the SDP webpages of C. Helmberg and
H. Wolkowicz.

Several approaches other than interior-point
methods have also been investigated, a few of them
being bundle methods [26,37], or nonlinear approa-
ches based on special factorizations [13]. This research
has increased steadily in the last few years. The codes
based on these new developments are the only ones
achieving satisfactory performance for some of the
very large and structured problems arising from
combinatorial optimization, with MAXCUT and the
Lovaasz theta function being prime examples.
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A comprehensive benchmarking effort of the
performance of several solvers in a representative
collection of problems (including some arising
from control) has been recently reported by Hans
Mittelmann in [38]; an up-to-date version of the
results is available at the web page http://plato.la.
asu.edu/bench.html.

The consensus and experience among researchers,
backed up by the hard data mentioned, seems to be
indicate that there is no algorithm or code that uni-
formly outperforms all others. While most software
packages will work satisfactorily on different pro-
blems, there may be (sometimes significant) differ-
ences in the computation times. It is therefore good
advice to try different codes at the initial stages of
solving a large-scale problem; not only do we benefit
from the possible speed differences, but we can also
validate the solutions against each other. The avail-
ability of SDP parsers such as the ones described in the
following subsection can notably help during this
migration process.

9.2. Parsers

The solvers described in the previous subsections
usually take as inputs either text files containing a
problem description, or directly the matrices (4;, b, C)
corresponding to the standard primal/dual formula-
tion. Needless to say, this is often inconvenient at the
initial modeling and solution stages. A natural solu-
tion is therefore to formulate the problem in a more
neutral description, that can later be automatically
translated to fit the requirements of each solver. For
generic optimization problems, this has indeed been
the approach of much of the operations research
community, which has developed some well-known
standard file formats, such as MPS, or optimization
modeling languages like AMPL and GAMS. An
important remark to keep in mind, much more critical
in the SDP case than in LP, is the extent to which the
problem structure can be signaled to the solver. There
is a growing push within the optimization community
towards the possibility of adding SDP-oriented
extensions to the standard modeling languages
mentioned.

In the meantime, however, enterprising re-
searchers in control and related areas have written
specific parsers that partially or fully automate
the conversion tasks, when used within a problem-
solving environment such as MATLAB. Among
them we mention the early effort SDPSOL [12], as
well as the more recent ones YALMIP [35],
SeDuMi Interface [31], and LMILab translator [54],
dealing with general SDPs, as well as the more
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domain-specific IQCbeta [36], Gloptipoly [28], and
SOSTOOLS [47].

Any of these parsers can make the task of posing
and solving a specific problem a much simpler and
enjoyable procedure than manual, error-prone meth-
ods. We strongly encourage the reader to take them
for a test drive.
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